算法的分析思路

Crq
Crq
管理员
1436
文章
0
粉丝
Linux教程评论37字数 702阅读2分20秒阅读模式
分析框架

1、以算法输入规模n作为参数进行分析算法效率

2、时间复杂度:找出基本操作O(1),再计算它的运行次数(忽略乘法常量,仅关注增长次数)

3、增长次数:log2n<n<nlog2n<n2<n3<2n<n! (注意指数级操作的增长次数只能解决小规模问题)

4、最差、平均和最佳效率均是指输入规模为n时候的效率(平均效率可以引用已知的推到结果)

主要概括分析框架:

1、算法的时间效率和空间效率都用输入规模的函数进行度量。

2、用算法的基本操作的执行次数来度量时间效率,用算法消耗的额外单位的数量来度量空间单位

3、在输入规模相同的情况下,有写算法的效率会有显著的差异,对于这类算法需要分析最差、平均和最佳效率

4、框架主要关心:输入规模趋向于无限大的情况下它的效率问题

渐近符号和基本效率类型

1、O(g(n))是增长次数 < = c*g(n)的函数集合,上阶

2、Ω(g(n))是增长次数 >= c*g(n)的函数集合,下阶

3、θ(g(n))是增长次数 = c*g(n)的函数集合,同阶

可以利用极限进行比较增长次数(洛必达法则)
算法整体效率是由具有较大增长次数的部分所决定的。

非递归问题的数学分析的通用方案

1、决定哪个参数表示输入规模的度量标准

2、找出算法的基本操作

3、检查基本操作的执行次数是否只依赖于输入规模,如果它还依赖于一些其他的特性(例如:元素在数组中的位置等)则分析最差、平均和最佳效率

4、建立一个算法基本操作执行次数的求和表达式(有可能是递推表达式)

5、利用求和运算的标准运算或者法则来建立一个操作次数的闭合公式,或者至少确定它的增长次数

递归问题的数学分析的通用方案

1、决定哪个参数表示输入规模的度量标准

2、找出算法的基本操作

3、检查基本操作的执行次数是否只依赖于输入规模,如果它还依赖于一些其他的特性(例如:元素在数组中的位置等)则分析最差、平均和最佳效率

4、对于算法基本操作执行次数,建立一个递推关系以及相应的初始条件。

5、解这个递推式,或者至少确定它的增长次数。

weinxin
我的微信
微信号已复制
我的微信
这是我的微信扫一扫
 
Crq
  • 本文由 Crq 发表于2024年10月19日 11:18:41
  • 转载请注明:https://www.cncrq.com/11260.html
Linux 上的 MAC 地址欺骗 Linux教程

Linux 上的 MAC 地址欺骗

网卡生产商在每一张网卡(NIC)在出厂时都会在上面刻上一个48位的全球唯一标识符(GUID),这串 GUID 就是网卡的 MAC 地址,用于确定一张网卡的身份。MAC 地址的高24...
匿名

发表评论

匿名网友
:?: :razz: :sad: :evil: :!: :smile: :oops: :grin: :eek: :shock: :???: :cool: :lol: :mad: :twisted: :roll: :wink: :idea: :arrow: :neutral: :cry: :mrgreen:
确定

拖动滑块以完成验证